Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
J Am Coll Radiol ; 2022 Oct 19.
Article in English | MEDLINE | ID: covidwho-2243362

ABSTRACT

OBJECTIVE: The purpose of this project was to describe the results of this multi-institutional quality improvement (QI) program conducted in a virtual format. METHODS: Developed at Stanford in 2016, the Realizing Improvement through Team Empowerment (RITE) program utilizes a team-based, project-based improvement approach to QI. The program was planned to be replicated at two other institutions through respective onsite programs, but was converted to a multi-institutional virtual format in 2020 in response to the COVID-19 pandemic. The virtual program began in July 2020 and ended in December 2020. The two institutions participated jointly in the cohort, with ten 2-hour training sessions every two weeks for a total of 18 weeks. Project progress was monitored using a predetermined project progress scale by the program manager, who provided more direct project support as needed. RESULTS: The cohort consisted of six teams (37 participants) from two institutions. Each team completed a QI project in subjects including MRI, US, CT, DR and ACR certification. All projects reached levels of between 3.0 (initial test cycles begun with evidence of modest improvement) and 4.0 (performance data meeting goal and statistical process control criteria for improvement), and met graduation criteria for program completion. DISCUSSION: We found the structured problem-solving method, along with timely focused QI education materials via a virtual platform, to be effective in simultaneously facilitating improvement projects from multiple institutions. The combination of two institutions fostered encouragement and shared learning across institutions.

2.
3D Print Med ; 8(1): 34, 2022 Nov 12.
Article in English | MEDLINE | ID: covidwho-2119317

ABSTRACT

BACKGROUND: Like most hospitals, our hospital experienced COVID-19 pandemic-related supply chain shortages. Our additive manufacturing lab's capacity to offset these shortages was soon overwhelmed, leading to a need to improve the efficiency of our existing workflow. We undertook a work system analysis guided by the Systems Engineering Initiative for Patient Safety (SEIPS) construct which is based on human factors and quality improvement principles. Our objective was to understand the inefficiencies in project submission, review, and acceptance decisions, and make systematic improvements to optimize lab operations. METHODS: Contextual inquiry (interviews and workflow analysis) revealed suboptimal characteristics of the system, specifically, reliance on a single person to facilitate work and, at times, fractured communication with project sponsors, with root causes related to the project intake and evaluation process as identified through SEIPS tools. As interventions, the analysis led us to: 1) enhance an existing but underused project submission form, 2) design and implement an internal project scorecard to standardize evaluation of requests, and 3) distribute the responsibility of submission evaluation across lab members. We implemented these interventions in May 2021 for new projects and compare them to our baseline February 1, 2018 through - April 30, 2021 performance (1184 days). RESULTS: All project requests were submitted using the enhanced project submission form and all received a standardized evaluation with the project scorecard. Prior to interventions, we completed 35/79 (44%) of projects, compared to 12/20 (60%) of projects after interventions were implemented. Time to review new submissions was reduced from an average of 58 days to 4 days. A more distributed team responsibility structure permitted improved workflow with no increase in staffing, allowing the Lab Manager to devote more time to engineering rather than administrative/decision tasks. CONCLUSIONS: By optimizing our workflows utilizing a human factors approach, we improved the work system of our additive manufacturing lab to be responsive to the urgent needs of the pandemic. The current workflow provides insights for labs aiming to meet the growing demand for point-of-care manufacturing.

4.
J Am Coll Radiol ; 18(1 Pt A): 108-120, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-1023626

ABSTRACT

Physical and mental stressors on radiologists can result in burnout. Although current efforts seek to target the issues of burnout and stress for radiologists, the impact of their physical workspace is often overlooked. By combining evidence-based design, human factors, and the architectural concept of the Eudaimonia Machine, we have developed a redesign of the radiology reading room that aims to create an optimal workspace for the radiologist. Informed by classical principles of well-being and contemporary work theory, Eudaimonia integrates concerns for individual wellness and efficiency to create an environment that fosters productivity. This layout arranges a work environment into purposeful spaces, each hosting tasks of varying degrees of intensity. The improved design addresses the radiologist's work requirements while also alleviating cognitive and physical stress, fatigue, and burnout. This new layout organizes the reading room into separate areas, each with a distinct purpose intended to support the range of radiologists' work, from consultation with other health care providers to reading images without interruption. The scientific principles that undergird evidence-based design and human factors considerations ensure that the Eudaimonia Radiology Machine is best suited to support the work of the radiologists and the entire radiology department.


Subject(s)
Burnout, Professional , Radiology Information Systems , Radiology , Burnout, Professional/prevention & control , Humans , Radiography , Radiologists
5.
Pediatr Radiol ; 50(9): 1191-1204, 2020 08.
Article in English | MEDLINE | ID: covidwho-649113

ABSTRACT

Pediatric radiology departments across the globe face unique challenges in the midst of the current COVID-19 pandemic that have not been addressed in professional guidelines. Providing a safe environment for personnel while continuing to deliver optimal care to patients is feasible when abiding by fundamental recommendations. In this article, we review current infection control practices across the multiple pediatric institutions represented on the Society for Pediatric Radiology (SPR) Quality and Safety committee. We discuss the routes of infectious transmission and appropriate transmission-based precautions, in addition to exploring strategies to optimize personal protective equipment (PPE) supplies. This work serves as a summary of current evidence-based recommendations for infection control, and current best practices specific to pediatric radiologists.


Subject(s)
Betacoronavirus , Coronavirus Infections/prevention & control , Infection Control/methods , Pandemics/prevention & control , Pediatrics/methods , Pneumonia, Viral/prevention & control , Practice Guidelines as Topic , Radiologists , COVID-19 , Child , Humans , Personal Protective Equipment , Radiology Department, Hospital , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL